rdf.scm
| 1 | ;;;; Copyright (C) 2020 Julien Lepiller <julien@lepiller.eu> |
| 2 | ;;;; |
| 3 | ;;;; This library is free software; you can redistribute it and/or |
| 4 | ;;;; modify it under the terms of the GNU Lesser General Public |
| 5 | ;;;; License as published by the Free Software Foundation; either |
| 6 | ;;;; version 3 of the License, or (at your option) any later version. |
| 7 | ;;;; |
| 8 | ;;;; This library is distributed in the hope that it will be useful, |
| 9 | ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | ;;;; Lesser General Public License for more details. |
| 12 | ;;;; |
| 13 | ;;;; You should have received a copy of the GNU Lesser General Public |
| 14 | ;;;; License along with this library; if not, write to the Free Software |
| 15 | ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 16 | ;;;; |
| 17 | |
| 18 | (define-module (rdf rdf) |
| 19 | #:use-module (srfi srfi-1) |
| 20 | #:use-module (srfi srfi-9) |
| 21 | #:use-module (sxml simple) |
| 22 | #:use-module (ice-9 match) |
| 23 | #:export (rdf-datatype |
| 24 | make-rdf-datatype |
| 25 | rdf-datatype? |
| 26 | rdf-datatype-iris |
| 27 | rdf-datatype-description |
| 28 | rdf-datatype-lexical? |
| 29 | rdf-datatype-value? |
| 30 | rdf-datatype-lexical->value |
| 31 | rdf-datatype-value->lexical |
| 32 | |
| 33 | rdf:langString |
| 34 | rdf:XMLLiteral |
| 35 | |
| 36 | rdf-vocabulary |
| 37 | make-rdf-vocabulary |
| 38 | rdf-vocabulary? |
| 39 | rdf-vocabulary-datatypes |
| 40 | rdf-vocabulary-order |
| 41 | rdf-vocabulary-compatible? |
| 42 | |
| 43 | rdf-dataset |
| 44 | make-rdf-dataset |
| 45 | rdf-dataset? |
| 46 | rdf-dataset-default-graph |
| 47 | rdf-dataset-named-graphs |
| 48 | |
| 49 | rdf-triple |
| 50 | make-rdf-triple |
| 51 | rdf-triple? |
| 52 | rdf-triple-subject |
| 53 | rdf-triple-predicate |
| 54 | rdf-triple-object |
| 55 | |
| 56 | rdf-literal |
| 57 | make-rdf-literal |
| 58 | rdf-literal? |
| 59 | rdf-literal-lexical-form |
| 60 | rdf-literal-type |
| 61 | rdf-literal-langtag |
| 62 | |
| 63 | blank-node? |
| 64 | rdf-graph? |
| 65 | |
| 66 | merge-graphs |
| 67 | rdf-isomorphic? |
| 68 | rdf-dataset-isomorphic? |
| 69 | recognize)) |
| 70 | |
| 71 | ;; From the specification: |
| 72 | ;; Datatypes are used with RDF literals to represent values such as strings, |
| 73 | ;; numbers and dates. A datatype consists of a lexical space, a value space |
| 74 | ;; and a lexical-to-value mapping, and is denoted by one or more IRIs. |
| 75 | ;; |
| 76 | ;; The lexical space of a datatype is a set of Unicode [UNICODE] strings. |
| 77 | ;; |
| 78 | ;; The lexical-to-value mapping of a datatype is a set of pairs whose first |
| 79 | ;; element belongs to the lexical space, and the second element belongs to the |
| 80 | ;; value space of the datatype. Each member of the lexical space is paired |
| 81 | ;; with exactly one value, and is a lexical representation of that value. The |
| 82 | ;; mapping can be seen as a function from the lexical space to the value space. |
| 83 | ;; |
| 84 | ;; In addition to the specification, we introduce value->lexical, a canonical |
| 85 | ;; function to map values to the lexical space. An important property is that |
| 86 | ;; for any val, (value? val) implies: |
| 87 | ;; (equal? (lexical->value (value->lexical val)) val) |
| 88 | ;; |
| 89 | ;; We also introduce a list of IRIs that denote this type, as more than one |
| 90 | ;; IRI can denote a type. This is set to a list of IRIs, but may be changed |
| 91 | ;; to a function to denote a set in the future. |
| 92 | ;; |
| 93 | ;; We also introduce a description, a text that helps humans understand the |
| 94 | ;; purpose of the datatype. |
| 95 | |
| 96 | (define-record-type rdf-datatype |
| 97 | (make-rdf-datatype iris description lexical? value? lexical->value value->lexical) |
| 98 | rdf-datatype? |
| 99 | (iris rdf-datatype-iris) |
| 100 | (description rdf-datatype-description) |
| 101 | (lexical? rdf-datatype-lexical?) |
| 102 | (value? rdf-datatype-value?) |
| 103 | (lexical->value rdf-datatype-lexical->value) |
| 104 | (value->lexical rdf-datatype-value->lexical)) |
| 105 | |
| 106 | (define rdf:langString |
| 107 | (make-rdf-datatype |
| 108 | '("http://www.w3.org/1999/02/22-rdf-syntax-ns#langString") |
| 109 | "A literal is a language-tagged string if the third element is present. |
| 110 | Lexical representations of language tags MAY be converted to lower case. The |
| 111 | value space of language tags is always in lower case." |
| 112 | string? |
| 113 | string? |
| 114 | string-downcase |
| 115 | identity)) |
| 116 | |
| 117 | (define rdf:XMLLiteral |
| 118 | (make-rdf-datatype |
| 119 | '("http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral") |
| 120 | "RDF provides for XML content as a possible literal value. Such content |
| 121 | is indicated in an RDF graph using a literal whose datatype is set to |
| 122 | rdf:XMLLiteral. This datatype is defined as non-normative because it depends |
| 123 | on [DOM4], a specification that has not yet reached W3C Recommendation status." |
| 124 | (lambda (l) |
| 125 | (false-if-exception (xml->sxml l))) |
| 126 | (lambda (v) |
| 127 | (false-if-exception (sxml->xml v))) |
| 128 | xml->sxml |
| 129 | sxml->xml)) |
| 130 | |
| 131 | ;; In addition to the specification, we define a vocabulary, which will be |
| 132 | ;; passed to entailments that need one. |
| 133 | ;; |
| 134 | ;; datatypes: a list of <rdf-datatype> records. |
| 135 | ;; order: a procedure that takes two arguments and returns whether the value |
| 136 | ;; space of the firts is included in the value space of the second |
| 137 | ;; compatible?: a procedure that takes two arguments and returns whether the |
| 138 | ;; intersection of their value space is not empty |
| 139 | |
| 140 | (define-record-type rdf-vocabulary |
| 141 | (make-rdf-vocabulary datatypes order compatible?) |
| 142 | rdf-vocabulary? |
| 143 | (datatypes rdf-vocabulary-datatypes) |
| 144 | (order rdf-vocabulary-order) |
| 145 | (compatible? rdf-vocabulary-compatible?)) |
| 146 | |
| 147 | ;; From the specification: |
| 148 | ;; An RDF dataset is a collection of RDF graphs, and comprises: |
| 149 | ;; |
| 150 | ;; * Exactly one default graph, being an RDF graph. The default graph does |
| 151 | ;; not have a name and MAY be empty. |
| 152 | ;; * Zero or more named graphs. Each named graph is a pair consisting of an |
| 153 | ;; IRI or a blank node (the graph name), and an RDF graph. Graph names are |
| 154 | ;; unique within an RDF dataset. |
| 155 | ;; |
| 156 | ;; We represent named graphs with a association list whose keys are IRIs or |
| 157 | ;; blank nodes, and values are RDF graphs. |
| 158 | |
| 159 | (define-record-type rdf-dataset |
| 160 | (make-rdf-dataset default-graph named-graphs) |
| 161 | rdf-dataset? |
| 162 | (default-graph rdf-dataset-default-graph) |
| 163 | (named-graphs rdf-dataset-named-graphs)) |
| 164 | |
| 165 | ;; From the specification: |
| 166 | ;; An RDF triple consists of three components: |
| 167 | ;; |
| 168 | ;; * the subject, which is an IRI or a blank node |
| 169 | ;; * the predicate, which is an IRI |
| 170 | ;; * the object, which is an IRI, a literal or a blank node |
| 171 | |
| 172 | (define-record-type rdf-triple |
| 173 | (make-rdf-triple subject predicate object) |
| 174 | rdf-triple? |
| 175 | (subject rdf-triple-subject) |
| 176 | (predicate rdf-triple-predicate) |
| 177 | (object rdf-triple-object)) |
| 178 | |
| 179 | ;; From the specification: |
| 180 | ;; A literal in an RDF graph consists of two or three elements: |
| 181 | ;; |
| 182 | ;; * a lexical form, being a Unicode [UNICODE] string, which SHOULD be in |
| 183 | ;; Normal Form C [NFC], |
| 184 | ;; * a datatype IRI, being an IRI identifying a datatype that determines how |
| 185 | ;; the lexical form maps to a literal value, and |
| 186 | ;; * if and only if the datatype IRI is `http://www.w3.org/1999/02/22-rdf-syntax-ns#langString`, |
| 187 | ;; a non-empty language tag as defined by [BCP47]. The language tag MUST |
| 188 | ;; be well-formed according to section 2.2.9 of [BCP47]. |
| 189 | |
| 190 | (define-record-type rdf-literal |
| 191 | (make-rdf-literal lexical-form type langtag) |
| 192 | rdf-literal? |
| 193 | (lexical-form rdf-literal-lexical-form) |
| 194 | (type rdf-literal-type) |
| 195 | (langtag rdf-literal-langtag)) |
| 196 | |
| 197 | ;; From the specification: |
| 198 | ;; Blank nodes are disjoint from IRIs and literals. Otherwise, the set of |
| 199 | ;; possible blank nodes is arbitrary. RDF makes no reference to any internal |
| 200 | ;; structure of blank nodes. |
| 201 | ;; |
| 202 | ;; Here, we will use integers as blank nodes |
| 203 | |
| 204 | (define blank-node? integer?) |
| 205 | |
| 206 | ;; From the specification: |
| 207 | ;; An RDF graph is a set of RDF triples. |
| 208 | ;; |
| 209 | ;; We represent a graph as a list of RDF triples |
| 210 | |
| 211 | (define (rdf-graph? graph) |
| 212 | (and (list? graph) (null? (filter (lambda (t) (not (rdf-triple? t))) graph)))) |
| 213 | |
| 214 | ;; The following is for a merging procedure, where we rename blank nodes to ensure |
| 215 | ;; we are not merging blank nodes that have the same name |
| 216 | |
| 217 | (define (last-blank g) |
| 218 | "Retun the biggest blank node identifier in g" |
| 219 | (let loop ((g g) (m 0)) |
| 220 | (match g |
| 221 | ('() m) |
| 222 | ((triple g ...) |
| 223 | (loop g (max m |
| 224 | (if (blank-node? (rdf-triple-subject triple)) |
| 225 | (rdf-triple-subject triple) |
| 226 | 0) |
| 227 | (if (blank-node? (rdf-triple-object triple)) |
| 228 | (rdf-triple-object triple) |
| 229 | 0))))))) |
| 230 | |
| 231 | (define (rename-blanks g num) |
| 232 | "Return the same graph, but blank nodes are renamed from num" |
| 233 | (let loop ((g g) (renamings '()) (num num) (result '())) |
| 234 | (match g |
| 235 | ('() result) |
| 236 | ((triple g ...) |
| 237 | (let* ((subject (rdf-triple-subject triple)) |
| 238 | (num (if (and (blank-node? subject) |
| 239 | (assoc-ref renamings subject)) |
| 240 | num |
| 241 | (+ num 1))) |
| 242 | (renamings |
| 243 | (if (and (blank-node? subject) |
| 244 | (assoc-ref renamings subject)) |
| 245 | renamings |
| 246 | (cons (cons subject num) renamings))) |
| 247 | (subject |
| 248 | (if (blank-node? subject) |
| 249 | (assoc-ref renamings subject) |
| 250 | subject)) |
| 251 | (predicate (rdf-triple-predicate triple)) |
| 252 | (object (rdf-triple-object triple)) |
| 253 | (num (if (and (blank-node? object) |
| 254 | (assoc-ref renamings object)) |
| 255 | num |
| 256 | (+ num 1))) |
| 257 | (renamings |
| 258 | (if (and (blank-node? object) |
| 259 | (assoc-ref renamings object)) |
| 260 | renamings |
| 261 | (cons (cons object num) renamings))) |
| 262 | (object |
| 263 | (if (blank-node? object) |
| 264 | (assoc-ref renamings object) |
| 265 | object))) |
| 266 | (loop g renamings num (cons (make-rdf-triple subject predicate object) |
| 267 | result))))))) |
| 268 | |
| 269 | (define (merge-graphs g1 g2) |
| 270 | "Merge two graphs g1 and g2. This is the same as append, but we need to make |
| 271 | sure we rename blank nodes, or some nodes will be merged when they shouldn't." |
| 272 | (append g1 (rename-blanks g2 (last-blank g1)))) |
| 273 | |
| 274 | ;; Next, a predicate on isomorphisms between two graphs. Two graphs are isomorphic |
| 275 | ;; when each triple has a corresponding triple in the other graph. |
| 276 | ;; |
| 277 | ;; To take blank nodes into account, there needs to be a mapping from blank nodes |
| 278 | ;; of the first graph to blank nodes of the other graph in order to prove |
| 279 | ;; isomorphism. |
| 280 | ;; |
| 281 | ;; First, we compare the two graphs and find possible constraints on that mapping. |
| 282 | ;; for instance, if one graph has (_:1, p, o) and the other (_:2, p, o), then |
| 283 | ;; a possible constraint is that _:1 maps to _:2. If the other graph also has |
| 284 | ;; (_:3, p, o) then maybe _:1 actually maps to _:3. |
| 285 | ;; |
| 286 | ;; Constraints are either "none" (no constraint), "equiv" (a mapping between two |
| 287 | ;; blank node identifiers), "or" (a disjunction) or "and" (a conjunction). |
| 288 | ;; By comparing the triples of the first graph, we create an conjunction between |
| 289 | ;; the constraints collected from each triple. The constraints of a triple is |
| 290 | ;; a disjunction between every case where it matches a triple from the other graph. |
| 291 | ;; That creates zero, one or two constraints (depending on the number of blank |
| 292 | ;; nodes). |
| 293 | ;; |
| 294 | ;; These constraints are transformed in a normal form, as a list of lists of |
| 295 | ;; conjunctions. Each list is a candidate mapping. sat? is used to evaluate the |
| 296 | ;; candidate mapping and ensure it is an isomorphism between the two sets of |
| 297 | ;; blank nodes. For every sat? equivalences, we check that the mapping actually |
| 298 | ;; maps triples of g1 to triples of g2, and its reverse mapping maps triples of |
| 299 | ;; g2 to triples of g1. Whenever one mapping works, the two graphs are equivalent. |
| 300 | ;; If no mapping works, the two graphs are not equivalent. |
| 301 | |
| 302 | (define (sat? equivalences) |
| 303 | "Return whether the set of equivalences satisfies the condition that it represents |
| 304 | an isomorphism between two blank node sets: for every equality, check that the |
| 305 | first component is always associated to the same second component, and that the |
| 306 | second component is always associated with the first." |
| 307 | (match equivalences |
| 308 | ('() #t) |
| 309 | (((first . second) equivalences ...) |
| 310 | (if (and (null? (filter |
| 311 | (lambda (eq) |
| 312 | (and (equal? (car eq) first) |
| 313 | (not (equal? (cdr eq) second)))) |
| 314 | equivalences)) |
| 315 | (null? (filter |
| 316 | (lambda (eq) |
| 317 | (and (not (equal? (car eq) first)) |
| 318 | (equal? (cdr eq) second))) |
| 319 | equivalences))) |
| 320 | (sat? equivalences) |
| 321 | #f)))) |
| 322 | |
| 323 | (define (filter-sat equivalences) |
| 324 | (if (list? equivalences) |
| 325 | (filter |
| 326 | (lambda (eq) |
| 327 | (if (member eq '(bot none)) |
| 328 | eq |
| 329 | (if (sat? eq) |
| 330 | eq |
| 331 | 'bot))) |
| 332 | equivalences) |
| 333 | equivalences)) |
| 334 | |
| 335 | (define (merge-joins l1 l2) |
| 336 | (cond |
| 337 | ((null? l1) l2) |
| 338 | ((null? l2) l1) |
| 339 | (else |
| 340 | (fold |
| 341 | (lambda (e1 res) |
| 342 | (append |
| 343 | (map (lambda (e2) |
| 344 | (append e1 e2)) |
| 345 | l2) |
| 346 | res)) |
| 347 | '() |
| 348 | l1)))) |
| 349 | |
| 350 | (define (to-disjunctions constraints) |
| 351 | (match constraints |
| 352 | (('equiv b1 b2) (list (list (cons b1 b2)))) |
| 353 | ('none (list (list))) |
| 354 | ('bot 'bot) |
| 355 | (('or e1 e2) |
| 356 | (let ((e1 (filter-sat (to-disjunctions e1))) |
| 357 | (e2 (filter-sat (to-disjunctions e2)))) |
| 358 | (cond |
| 359 | ((equal? e2 'bot) |
| 360 | e1) |
| 361 | ((equal? e1 'bot) |
| 362 | e2) |
| 363 | ((equal? e2 'none) |
| 364 | 'none) |
| 365 | ((equal? e1 'none) |
| 366 | 'none) |
| 367 | ((equal? e1 e2) |
| 368 | e1) |
| 369 | (else |
| 370 | (append e1 e2))))) |
| 371 | (('and e1 e2) |
| 372 | (let ((e1 (filter-sat (to-disjunctions e1))) |
| 373 | (e2 (filter-sat (to-disjunctions e2)))) |
| 374 | (cond |
| 375 | ((equal? e1 'bot) |
| 376 | 'bot) |
| 377 | ((equal? e2 'bot) |
| 378 | 'bot) |
| 379 | ((equal? e2 'none) |
| 380 | e1) |
| 381 | ((equal? e1 'none) |
| 382 | e2) |
| 383 | ((equal? e1 e2) |
| 384 | e1) |
| 385 | (else |
| 386 | (merge-joins e1 e2))))))) |
| 387 | |
| 388 | (define (generate-triple-constraints t1 t2) |
| 389 | (match t1 |
| 390 | (($ rdf-triple s1 p1 o1) |
| 391 | (match t2 |
| 392 | (($ rdf-triple s2 p2 o2) |
| 393 | (if (and (or (equal? s1 s2) (and (blank-node? s1) (blank-node? s2))) |
| 394 | (equal? p1 p2) |
| 395 | (or (equal? o1 o2) (and (blank-node? o1) (blank-node? o2)))) |
| 396 | (list 'and |
| 397 | (if (blank-node? s1) |
| 398 | (list 'equiv s1 s2) |
| 399 | 'none) |
| 400 | (if (blank-node? o1) |
| 401 | (list 'equiv o1 o2) |
| 402 | 'none)) |
| 403 | #f)))))) |
| 404 | |
| 405 | (define (generate-constraints t1 g2) |
| 406 | (match g2 |
| 407 | ('() 'bot) |
| 408 | ((t2 g2 ...) |
| 409 | (let ((c (generate-triple-constraints t1 t2))) |
| 410 | (if c |
| 411 | (list 'or c (generate-constraints t1 g2)) |
| 412 | (generate-constraints t1 g2)))))) |
| 413 | |
| 414 | (define (generate-graph-constraints g1 g2) |
| 415 | (fold (lambda (t constraints) |
| 416 | (list 'and (generate-constraints t g2) constraints)) |
| 417 | 'none g1)) |
| 418 | |
| 419 | (define (reverse-mapping mapping) |
| 420 | (let loop ((mapping mapping) (result '())) |
| 421 | (match mapping |
| 422 | ('() result) |
| 423 | (((first . second) mapping ...) |
| 424 | (loop mapping (cons (cons second first) result)))))) |
| 425 | |
| 426 | (define (validate-mapping mapping g1 g2) |
| 427 | (match g1 |
| 428 | ('() #t) |
| 429 | ((t1 g1 ...) |
| 430 | (and (not (null? (filter |
| 431 | (lambda (t2) |
| 432 | (let ((s1 (rdf-triple-subject t1)) |
| 433 | (s2 (rdf-triple-subject t2)) |
| 434 | (p1 (rdf-triple-predicate t1)) |
| 435 | (p2 (rdf-triple-predicate t2)) |
| 436 | (o1 (rdf-triple-object t1)) |
| 437 | (o2 (rdf-triple-object t2))) |
| 438 | (and |
| 439 | (if (blank-node? s1) |
| 440 | (equal? (assoc-ref mapping s1) s2) |
| 441 | (equal? s1 s2)) |
| 442 | (equal? p1 p2) |
| 443 | (if (blank-node? o1) |
| 444 | (equal? (assoc-ref mapping o1) o2) |
| 445 | (equal? o1 o2))))) |
| 446 | g2))) |
| 447 | (validate-mapping mapping g1 g2))))) |
| 448 | |
| 449 | (define (rdf-isomorphic? g1 g2) |
| 450 | "Compare two graphs and return whether they are isomorph." |
| 451 | (let* ((constraints (generate-graph-constraints g1 g2)) |
| 452 | (disjunctions (to-disjunctions (simplify-constraints constraints)))) |
| 453 | (if (list? disjunctions) |
| 454 | (let loop ((disjunctions (filter sat? disjunctions))) |
| 455 | (match disjunctions |
| 456 | ('() (and (null? g1) (null? g2))) |
| 457 | ((mapping disjunctions ...) |
| 458 | (if (and (validate-mapping mapping g1 g2) |
| 459 | (validate-mapping (reverse-mapping mapping) g2 g1)) |
| 460 | #t |
| 461 | (loop disjunctions))))) |
| 462 | #f))) |
| 463 | |
| 464 | (define* (simplify-constraints c #:optional (equivalences '())) |
| 465 | (match c |
| 466 | ('bot 'bot) |
| 467 | ('none 'none) |
| 468 | (('equiv a b) |
| 469 | (if (assoc-ref equivalences a) |
| 470 | (if (equal? (assoc-ref equivalences a) b) |
| 471 | 'none |
| 472 | 'bot) |
| 473 | c)) |
| 474 | (('and e1 e2) |
| 475 | (match (simplify-constraints e1 equivalences) |
| 476 | ('bot 'bot) |
| 477 | ('none (simplify-constraints e2 equivalences)) |
| 478 | (('equiv a b) |
| 479 | (let ((e2 (simplify-constraints e2 (cons (cons a b) equivalences)))) |
| 480 | (match e2 |
| 481 | ('bot 'bot) |
| 482 | ('none (list 'equiv a b)) |
| 483 | (e2 (list 'and (list 'equiv a b) (simplify-constraints e2 (cons (cons a b) equivalences))))))) |
| 484 | (e1 |
| 485 | (match (simplify-constraints e2 equivalences) |
| 486 | ('bot 'bot) |
| 487 | ('none e1) |
| 488 | (('equiv a b) |
| 489 | (list 'and (list 'equiv a b) (simplify-constraints e1 (cons (cons a b) equivalences)))) |
| 490 | (e2 |
| 491 | (list 'and e1 e2)))))) |
| 492 | (('or e1 e2) |
| 493 | (let ((e1 (simplify-constraints e1 equivalences)) |
| 494 | (e2 (simplify-constraints e2 equivalences))) |
| 495 | (cond |
| 496 | ((equal? e1 'bot) |
| 497 | e2) |
| 498 | ((equal? e2 'bot) |
| 499 | e1) |
| 500 | ((equal? e1 'none) |
| 501 | 'none) |
| 502 | ((equal? e2 'none) |
| 503 | 'none) |
| 504 | ((equal? e1 e2) |
| 505 | e1) |
| 506 | (else |
| 507 | (list 'or e1 e2))))))) |
| 508 | |
| 509 | (define (generate-dataset-constraints d1 d2) |
| 510 | (let ((g1 (rdf-dataset-default-graph d1)) |
| 511 | (g2 (rdf-dataset-default-graph d2)) |
| 512 | (ng1 (rdf-dataset-named-graphs d1)) |
| 513 | (ng2 (rdf-dataset-named-graphs d2))) |
| 514 | (list 'and (simplify-constraints (generate-graph-constraints g1 g2)) |
| 515 | (if (null? ng1) |
| 516 | 'none |
| 517 | (fold (lambda (ng1 constraints) |
| 518 | (match ng1 |
| 519 | ((n1 . g1) |
| 520 | (list |
| 521 | 'and |
| 522 | (if (blank-node? n1) |
| 523 | (fold (lambda (ng2 constraints) |
| 524 | (list 'or (list 'and (list 'equiv n1 (car ng2)) |
| 525 | (simplify-constraints |
| 526 | (generate-graph-constraints |
| 527 | g1 (cdr ng2)))) |
| 528 | constraints)) |
| 529 | 'bot |
| 530 | (filter (lambda (g2) (blank-node? (car g2))) ng2)) |
| 531 | (let ((g2 (assoc-ref ng2 n1))) |
| 532 | (if g2 |
| 533 | (list 'and (simplify-constraints |
| 534 | (generate-graph-constraints g1 g2)) |
| 535 | constraints) |
| 536 | 'bot))) |
| 537 | constraints)))) |
| 538 | 'none ng1))))) |
| 539 | |
| 540 | (define (validate-dataset-mapping mapping d1 d2) |
| 541 | (define (validate-named-graph name graph) |
| 542 | (let ((graph2 (if (blank-node? name) |
| 543 | (assoc-ref (rdf-dataset-named-graphs d2) |
| 544 | (assoc-ref mapping name)) |
| 545 | (assoc-ref (rdf-dataset-named-graphs d2) name)))) |
| 546 | (validate-mapping mapping graph graph2))) |
| 547 | |
| 548 | (and (validate-mapping mapping (rdf-dataset-default-graph d1) |
| 549 | (rdf-dataset-default-graph d2)) |
| 550 | (null? (filter |
| 551 | (lambda (ng1) |
| 552 | (match ng1 |
| 553 | ((name . graph) |
| 554 | (not (validate-named-graph name graph))))) |
| 555 | (rdf-dataset-named-graphs d1))))) |
| 556 | |
| 557 | (define (rdf-dataset-isomorphic? d1 d2) |
| 558 | "Compare two datasets and return whether they are isomorphic." |
| 559 | (let* ((constraints (generate-dataset-constraints d1 d2)) |
| 560 | (disjunctions (to-disjunctions constraints))) |
| 561 | (if (list? disjunctions) |
| 562 | (let loop ((disjunctions (filter sat? disjunctions))) |
| 563 | (match disjunctions |
| 564 | ('() (and (null? (rdf-dataset-default-graph d1)) |
| 565 | (null? (rdf-dataset-default-graph d2)) |
| 566 | (null? (rdf-dataset-named-graphs d1)) |
| 567 | (null? (rdf-dataset-named-graphs d2)))) |
| 568 | ((mapping disjunctions ...) |
| 569 | (or (and (validate-dataset-mapping mapping d1 d2) |
| 570 | (validate-dataset-mapping (reverse-mapping mapping) d2 d1)) |
| 571 | (loop disjunctions))))) |
| 572 | #f))) |
| 573 | |
| 574 | ;; Recognizing datatypes is a transformation on the graph to add the proper |
| 575 | ;; datatype to literals, and replace IRIs that represent a datatype with the |
| 576 | ;; datatype it represents. This is useful for some entailment regimes, such |
| 577 | ;; as the RDF or RDFS entailment regimes. |
| 578 | |
| 579 | (define (recognize-data d datatypes) |
| 580 | (match d |
| 581 | ((? string? iri) |
| 582 | (let loop ((datatypes datatypes)) |
| 583 | (if (null? datatypes) |
| 584 | iri |
| 585 | (if (member iri (rdf-datatype-iris (car datatypes))) |
| 586 | (car datatypes) |
| 587 | (loop (cdr datatypes)))))) |
| 588 | (($ rdf-literal literal-form type langtag) |
| 589 | (let loop ((datatypes datatypes)) |
| 590 | (if (null? datatypes) |
| 591 | (make-rdf-literal literal-form type langtag) |
| 592 | (if (member type (rdf-datatype-iris (car datatypes))) |
| 593 | (make-rdf-literal literal-form (car datatypes) langtag) |
| 594 | (loop (cdr datatypes)))))) |
| 595 | (_ d))) |
| 596 | |
| 597 | (define (recognize-triple t datatypes) |
| 598 | (match t |
| 599 | (($ rdf-triple subject predicate object) |
| 600 | (make-rdf-triple |
| 601 | (recognize-data subject datatypes) |
| 602 | predicate |
| 603 | (recognize-data object datatypes))))) |
| 604 | |
| 605 | (define (recognize graph vocabulary) |
| 606 | (match graph |
| 607 | (() '()) |
| 608 | ((t graph ...) |
| 609 | (cons |
| 610 | (recognize-triple t (rdf-vocabulary-datatypes vocabulary)) |
| 611 | (recognize graph vocabulary))))) |
| 612 | |
| 613 |