rdf.scm
1 | ;;;; Copyright (C) 2020 Julien Lepiller <julien@lepiller.eu> |
2 | ;;;; |
3 | ;;;; This library is free software; you can redistribute it and/or |
4 | ;;;; modify it under the terms of the GNU Lesser General Public |
5 | ;;;; License as published by the Free Software Foundation; either |
6 | ;;;; version 3 of the License, or (at your option) any later version. |
7 | ;;;; |
8 | ;;;; This library is distributed in the hope that it will be useful, |
9 | ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
11 | ;;;; Lesser General Public License for more details. |
12 | ;;;; |
13 | ;;;; You should have received a copy of the GNU Lesser General Public |
14 | ;;;; License along with this library; if not, write to the Free Software |
15 | ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
16 | ;;;; |
17 | |
18 | (define-module (rdf rdf) |
19 | #:use-module (srfi srfi-1) |
20 | #:use-module (srfi srfi-9) |
21 | #:use-module (sxml simple) |
22 | #:use-module (ice-9 match) |
23 | #:export (rdf-datatype |
24 | make-rdf-datatype |
25 | rdf-datatype? |
26 | rdf-datatype-iris |
27 | rdf-datatype-description |
28 | rdf-datatype-lexical? |
29 | rdf-datatype-value? |
30 | rdf-datatype-lexical->value |
31 | rdf-datatype-value->lexical |
32 | |
33 | rdf:langString |
34 | rdf:XMLLiteral |
35 | |
36 | rdf-vocabulary |
37 | make-rdf-vocabulary |
38 | rdf-vocabulary? |
39 | rdf-vocabulary-datatypes |
40 | rdf-vocabulary-order |
41 | rdf-vocabulary-compatible? |
42 | |
43 | rdf-dataset |
44 | make-rdf-dataset |
45 | rdf-dataset? |
46 | rdf-dataset-default-graph |
47 | rdf-dataset-named-graphs |
48 | |
49 | rdf-triple |
50 | make-rdf-triple |
51 | rdf-triple? |
52 | rdf-triple-subject |
53 | rdf-triple-predicate |
54 | rdf-triple-object |
55 | |
56 | rdf-literal |
57 | make-rdf-literal |
58 | rdf-literal? |
59 | rdf-literal-lexical-form |
60 | rdf-literal-type |
61 | rdf-literal-langtag |
62 | |
63 | blank-node? |
64 | rdf-graph? |
65 | |
66 | merge-graphs |
67 | rdf-isomorphic? |
68 | recognize)) |
69 | |
70 | ;; From the specification: |
71 | ;; Datatypes are used with RDF literals to represent values such as strings, |
72 | ;; numbers and dates. A datatype consists of a lexical space, a value space |
73 | ;; and a lexical-to-value mapping, and is denoted by one or more IRIs. |
74 | ;; |
75 | ;; The lexical space of a datatype is a set of Unicode [UNICODE] strings. |
76 | ;; |
77 | ;; The lexical-to-value mapping of a datatype is a set of pairs whose first |
78 | ;; element belongs to the lexical space, and the second element belongs to the |
79 | ;; value space of the datatype. Each member of the lexical space is paired |
80 | ;; with exactly one value, and is a lexical representation of that value. The |
81 | ;; mapping can be seen as a function from the lexical space to the value space. |
82 | ;; |
83 | ;; In addition to the specification, we introduce value->lexical, a canonical |
84 | ;; function to map values to the lexical space. An important property is that |
85 | ;; for any val, (value? val) implies: |
86 | ;; (equal? (lexical->value (value->lexical val)) val) |
87 | ;; |
88 | ;; We also introduce a list of IRIs that denote this type, as more than one |
89 | ;; IRI can denote a type. This is set to a list of IRIs, but may be changed |
90 | ;; to a function to denote a set in the future. |
91 | ;; |
92 | ;; We also introduce a description, a text that helps humans understand the |
93 | ;; purpose of the datatype. |
94 | |
95 | (define-record-type rdf-datatype |
96 | (make-rdf-datatype iris description lexical? value? lexical->value value->lexical) |
97 | rdf-datatype? |
98 | (iris rdf-datatype-iris) |
99 | (description rdf-datatype-description) |
100 | (lexical? rdf-datatype-lexical?) |
101 | (value? rdf-datatype-value?) |
102 | (lexical->value rdf-datatype-lexical->value) |
103 | (value->lexical rdf-datatype-value->lexical)) |
104 | |
105 | (define rdf:langString |
106 | (make-rdf-datatype |
107 | '("http://www.w3.org/1999/02/22-rdf-syntax-ns#langString") |
108 | "A literal is a language-tagged string if the third element is present. |
109 | Lexical representations of language tags MAY be converted to lower case. The |
110 | value space of language tags is always in lower case." |
111 | string? |
112 | string? |
113 | string-downcase |
114 | identity)) |
115 | |
116 | (define rdf:XMLLiteral |
117 | (make-rdf-datatype |
118 | '("http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral") |
119 | "RDF provides for XML content as a possible literal value. Such content |
120 | is indicated in an RDF graph using a literal whose datatype is set to |
121 | rdf:XMLLiteral. This datatype is defined as non-normative because it depends |
122 | on [DOM4], a specification that has not yet reached W3C Recommendation status." |
123 | (lambda (l) |
124 | (false-if-exception (xml->sxml l))) |
125 | (lambda (v) |
126 | (false-if-exception (sxml->xml v))) |
127 | xml->sxml |
128 | sxml->xml)) |
129 | |
130 | ;; In addition to the specification, we define a vocabulary, which will be |
131 | ;; passed to entailments that need one. |
132 | ;; |
133 | ;; datatypes: a list of <rdf-datatype> records. |
134 | ;; order: a procedure that takes two arguments and returns whether the value |
135 | ;; space of the firts is included in the value space of the second |
136 | ;; compatible?: a procedure that takes two arguments and returns whether the |
137 | ;; intersection of their value space is not empty |
138 | |
139 | (define-record-type rdf-vocabulary |
140 | (make-rdf-vocabulary datatypes order compatible?) |
141 | rdf-vocabulary? |
142 | (datatypes rdf-vocabulary-datatypes) |
143 | (order rdf-vocabulary-order) |
144 | (compatible? rdf-vocabulary-compatible?)) |
145 | |
146 | ;; From the specification: |
147 | ;; An RDF dataset is a collection of RDF graphs, and comprises: |
148 | ;; |
149 | ;; * Exactly one default graph, being an RDF graph. The default graph does |
150 | ;; not have a name and MAY be empty. |
151 | ;; * Zero or more named graphs. Each named graph is a pair consisting of an |
152 | ;; IRI or a blank node (the graph name), and an RDF graph. Graph names are |
153 | ;; unique within an RDF dataset. |
154 | ;; |
155 | ;; We represent named graphs with a association list whose keys are IRIs or |
156 | ;; blank nodes, and values are RDF graphs. |
157 | |
158 | (define-record-type rdf-dataset |
159 | (make-rdf-dataset default-graph named-graphs) |
160 | rdf-dataset? |
161 | (default-graph rdf-dataset-default-graph) |
162 | (named-graphs rdf-dataset-named-graphs)) |
163 | |
164 | ;; From the specification: |
165 | ;; An RDF triple consists of three components: |
166 | ;; |
167 | ;; * the subject, which is an IRI or a blank node |
168 | ;; * the predicate, which is an IRI |
169 | ;; * the object, which is an IRI, a literal or a blank node |
170 | |
171 | (define-record-type rdf-triple |
172 | (make-rdf-triple subject predicate object) |
173 | rdf-triple? |
174 | (subject rdf-triple-subject) |
175 | (predicate rdf-triple-predicate) |
176 | (object rdf-triple-object)) |
177 | |
178 | ;; From the specification: |
179 | ;; A literal in an RDF graph consists of two or three elements: |
180 | ;; |
181 | ;; * a lexical form, being a Unicode [UNICODE] string, which SHOULD be in |
182 | ;; Normal Form C [NFC], |
183 | ;; * a datatype IRI, being an IRI identifying a datatype that determines how |
184 | ;; the lexical form maps to a literal value, and |
185 | ;; * if and only if the datatype IRI is `http://www.w3.org/1999/02/22-rdf-syntax-ns#langString`, |
186 | ;; a non-empty language tag as defined by [BCP47]. The language tag MUST |
187 | ;; be well-formed according to section 2.2.9 of [BCP47]. |
188 | |
189 | (define-record-type rdf-literal |
190 | (make-rdf-literal lexical-form type language-tag) |
191 | rdf-literal? |
192 | (lexical-form rdf-literal-lexical-form) |
193 | (type rdf-literal-type) |
194 | (language-tag rdf-literal-language-tag)) |
195 | |
196 | ;; From the specification: |
197 | ;; Blank nodes are disjoint from IRIs and literals. Otherwise, the set of |
198 | ;; possible blank nodes is arbitrary. RDF makes no reference to any internal |
199 | ;; structure of blank nodes. |
200 | ;; |
201 | ;; Here, we will use integers as blank nodes |
202 | |
203 | (define blank-node? integer?) |
204 | |
205 | ;; From the specification: |
206 | ;; An RDF graph is a set of RDF triples. |
207 | ;; |
208 | ;; We represent a graph as a list of RDF triples |
209 | |
210 | (define (rdf-graph? graph) |
211 | (and (list? graph) (null? (filter (lambda (t) (not (rdf-triple? t))) graph)))) |
212 | |
213 | ;; The following is for a merging procedure, where we rename blank nodes to ensure |
214 | ;; we are not merging blank nodes that have the same name |
215 | |
216 | (define (last-blank g) |
217 | "Retun the biggest blank node identifier in g" |
218 | (let loop ((g g) (m 0)) |
219 | (match g |
220 | ('() m) |
221 | ((triple g ...) |
222 | (loop g (max m |
223 | (if (blank-node? (rdf-triple-subject triple)) |
224 | (rdf-triple-subject triple) |
225 | 0) |
226 | (if (blank-node? (rdf-triple-object triple)) |
227 | (rdf-triple-object triple) |
228 | 0))))))) |
229 | |
230 | (define (rename-blanks g num) |
231 | "Return the same graph, but blank nodes are renamed from num" |
232 | (let loop ((g g) (renamings '()) (num num) (result '())) |
233 | (match g |
234 | ('() result) |
235 | ((triple g ...) |
236 | (let* ((subject (rdf-triple-subject triple)) |
237 | (num (if (and (blank-node? subject) |
238 | (assoc-ref renamings subject)) |
239 | num |
240 | (+ num 1))) |
241 | (renamings |
242 | (if (and (blank-node? subject) |
243 | (assoc-ref renamings subject)) |
244 | renamings |
245 | (cons (cons subject num) renamings))) |
246 | (subject |
247 | (if (blank-node? subject) |
248 | (assoc-ref renamings subject) |
249 | subject)) |
250 | (predicate (rdf-triple-predicate triple)) |
251 | (object (rdf-triple-object triple)) |
252 | (num (if (and (blank-node? object) |
253 | (assoc-ref renamings object)) |
254 | num |
255 | (+ num 1))) |
256 | (renamings |
257 | (if (and (blank-node? object) |
258 | (assoc-ref renamings object)) |
259 | renamings |
260 | (cons (cons object num) renamings))) |
261 | (object |
262 | (if (blank-node? object) |
263 | (assoc-ref renamings object) |
264 | object))) |
265 | (loop g renamings num (cons (make-rdf-triple subject predicate object) |
266 | result))))))) |
267 | |
268 | (define (merge-graphs g1 g2) |
269 | "Merge two graphs g1 and g2. This is the same as append, but we need to make |
270 | sure we rename blank nodes, or some nodes will be merged when they shouldn't." |
271 | (append g1 (rename-blanks g2 (last-blank g1)))) |
272 | |
273 | ;; Next, a predicate on isomorphisms between two graphs. Two graphs are isomorphic |
274 | ;; when each triple has a corresponding triple in the other graph. |
275 | ;; |
276 | ;; To take blank nodes into account, there needs to be a mapping from blank nodes |
277 | ;; of the first graph to blank nodes of the other graph in order to prove |
278 | ;; isomorphism. |
279 | ;; |
280 | ;; First, we compare the two graphs and find possible constraints on that mapping. |
281 | ;; for instance, if one graph has (_:1, p, o) and the other (_:2, p, o), then |
282 | ;; a possible constraint is that _:1 maps to _:2. If the other graph also has |
283 | ;; (_:3, p, o) then maybe _:1 actually maps to _:3. |
284 | ;; |
285 | ;; Constraints are either "none" (no constraint), "equiv" (a mapping between two |
286 | ;; blank node identifiers), "or" (a disjunction) or "and" (a conjunction). |
287 | ;; By comparing the triples of the first graph, we create an conjunction between |
288 | ;; the constraints collected from each triple. The constraints of a triple is |
289 | ;; a disjunction between every case where it matches a triple from the other graph. |
290 | ;; That creates zero, one or two constraints (depending on the number of blank |
291 | ;; nodes). |
292 | ;; |
293 | ;; These constraints are transformed in a normal form, as a list of lists of |
294 | ;; conjunctions. Each list is a candidate mapping. sat? is used to evaluate the |
295 | ;; candidate mapping and ensure it is an isomorphism between the two sets of |
296 | ;; blank nodes. For every sat? equivalences, we check that the mapping actually |
297 | ;; maps triples of g1 to triples of g2, and its reverse mapping maps triples of |
298 | ;; g2 to triples of g1. Whenever one mapping works, the two graphs are equivalent. |
299 | ;; If no mapping works, the two graphs are not equivalent. |
300 | |
301 | (define (sat? equivalences) |
302 | "Return whether the set of equivalences satisfies the condition that it represents |
303 | an isomorphism between two blank node sets: for every equality, check that the |
304 | first component is always associated to the same second component, and that the |
305 | second component is always associated with the first." |
306 | (match equivalences |
307 | ('() #t) |
308 | (((first . second) equivalences ...) |
309 | (if (and (null? (filter |
310 | (lambda (eq) |
311 | (and (equal? (car eq) first) |
312 | (not (equal? (cdr eq) second)))) |
313 | equivalences)) |
314 | (null? (filter |
315 | (lambda (eq) |
316 | (and (not (equal? (car eq) first)) |
317 | (equal? (cdr eq) second))) |
318 | equivalences))) |
319 | (sat? equivalences) |
320 | #f)))) |
321 | |
322 | (define (merge-joins l1 l2) |
323 | (cond |
324 | ((null? l1) l2) |
325 | ((null? l2) l1) |
326 | (else |
327 | (fold |
328 | (lambda (e1 res) |
329 | (append |
330 | (map (lambda (e2) |
331 | (append e1 e2)) |
332 | l2) |
333 | res)) |
334 | '() |
335 | l1)))) |
336 | |
337 | (define (to-disjunctions constraints) |
338 | (match constraints |
339 | (('equiv b1 b2) (list (list (cons b1 b2)))) |
340 | ('none (list (list))) |
341 | (('or e1 e2) |
342 | (cond |
343 | ((equal? e2 'bot) |
344 | (to-disjunctions e1)) |
345 | ((equal? e1 'bot) |
346 | (to-disjunctions e2)) |
347 | (else |
348 | (let ((e1 (to-disjunctions e1)) |
349 | (e2 (to-disjunctions e2))) |
350 | (append e1 e2))))) |
351 | (('and e1 e2) |
352 | (cond |
353 | ((equal? e1 'bot) |
354 | 'bot) |
355 | ((equal? e2 'bot) |
356 | 'bot) |
357 | (else |
358 | (let ((e1 (to-disjunctions e1)) |
359 | (e2 (to-disjunctions e2))) |
360 | (merge-joins e1 e2))))))) |
361 | |
362 | (define (generate-triple-constraints t1 t2) |
363 | (match t1 |
364 | (($ rdf-triple s1 p1 o1) |
365 | (match t2 |
366 | (($ rdf-triple s2 p2 o2) |
367 | (if (and (or (equal? s1 s2) (and (blank-node? s1) (blank-node? s2))) |
368 | (equal? p1 p2) |
369 | (or (equal? o1 o2) (and (blank-node? o1) (blank-node? o2)))) |
370 | (list 'and |
371 | (if (blank-node? s1) |
372 | (list 'equiv s1 s2) |
373 | 'none) |
374 | (if (blank-node? o1) |
375 | (list 'equiv o1 o2) |
376 | 'none)) |
377 | #f)))))) |
378 | |
379 | (define (generate-constraints t1 g2) |
380 | (match g2 |
381 | ('() 'bot) |
382 | ((t2 g2 ...) |
383 | (let ((c (generate-triple-constraints t1 t2))) |
384 | (if c |
385 | (list 'or c (generate-constraints t1 g2)) |
386 | (generate-constraints t1 g2)))))) |
387 | |
388 | (define (reverse-mapping mapping) |
389 | (let loop ((mapping mapping) (result '())) |
390 | (match mapping |
391 | ('() result) |
392 | (((first . second) mapping ...) |
393 | (loop mapping (cons (cons second first) result)))))) |
394 | |
395 | (define (validate-mapping mapping g1 g2) |
396 | (match g1 |
397 | ('() #t) |
398 | ((t1 g1 ...) |
399 | (and (not (null? (filter |
400 | (lambda (t2) |
401 | (let ((s1 (rdf-triple-subject t1)) |
402 | (s2 (rdf-triple-subject t2)) |
403 | (p1 (rdf-triple-predicate t1)) |
404 | (p2 (rdf-triple-predicate t2)) |
405 | (o1 (rdf-triple-object t1)) |
406 | (o2 (rdf-triple-object t2))) |
407 | (and |
408 | (if (blank-node? s1) |
409 | (equal? (assoc-ref mapping s1) s2) |
410 | (equal? s1 s2)) |
411 | (equal? p1 p2) |
412 | (if (blank-node? o1) |
413 | (equal? (assoc-ref mapping o1) o2) |
414 | (equal? o1 o2))))) |
415 | g2))) |
416 | (validate-mapping mapping g1 g2))))) |
417 | |
418 | (define (rdf-isomorphic? g1 g2) |
419 | "Compare two graphs and return whether they are isomorph." |
420 | (let* ((constraints (fold (lambda (t constraints) |
421 | (list 'and (generate-constraints t g2) constraints)) |
422 | 'none g1)) |
423 | (disjunctions (to-disjunctions constraints))) |
424 | (let loop ((disjunctions disjunctions)) |
425 | (match (filter sat? disjunctions) |
426 | ('() (and (null? g1) (null? g2))) |
427 | ((mapping disjunctions ...) |
428 | (if (and (validate-mapping mapping g1 g2) |
429 | (validate-mapping (reverse-mapping mapping) g2 g1)) |
430 | #t |
431 | (loop disjunctions))))))) |
432 | |
433 | ;; Recognizing datatypes is a transformation on the graph to add the proper |
434 | ;; datatype to literals, and replace IRIs that represent a datatype with the |
435 | ;; datatype it represents. This is useful for some entailment regimes, such |
436 | ;; as the RDF or RDFS entailment regimes. |
437 | |
438 | (define (recognize-data d datatypes) |
439 | (match d |
440 | ((? string? iri) |
441 | (let loop ((datatypes datatypes)) |
442 | (if (null? datatypes) |
443 | iri |
444 | (if (member iri (rdf-datatype-iris (car datatypes))) |
445 | (car datatypes) |
446 | (loop (cdr datatypes)))))) |
447 | (($ rdf-literal literal-form type langtag) |
448 | (let loop ((datatypes datatypes)) |
449 | (if (null? datatypes) |
450 | (make-rdf-literal literal-form type langtag) |
451 | (if (member type (rdf-datatype-iris (car datatypes))) |
452 | (make-rdf-literal literal-form (car datatypes) langtag) |
453 | (loop (cdr datatypes)))))) |
454 | (_ d))) |
455 | |
456 | (define (recognize-triple t datatypes) |
457 | (match t |
458 | (($ rdf-triple subject predicate object) |
459 | (make-rdf-triple |
460 | (recognize-data subject datatypes) |
461 | predicate |
462 | (recognize-data object datatypes))))) |
463 | |
464 | (define (recognize graph vocabulary) |
465 | (match graph |
466 | (() '()) |
467 | ((t graph ...) |
468 | (cons |
469 | (recognize-triple t (rdf-vocabulary-datatypes vocabulary)) |
470 | (recognize graph vocabulary))))) |
471 | |
472 |